三线合一怎么证明
所谓的三线合一是指等腰三角形底边上的中线,底边上的高,顶角的平分线重合。
证明时只需比如证其中两个重合就可说明是等腰三角形。
已知:△ABC为等腰三角形,AB=AC,AD为中线。求证:AD⊥BC,∠BAD=∠CAD
等腰三角形ABC(AB=AC)
∵AB=AC(已知)
∴∠B=∠C(等边对等角)
在△ABD和△ACD中:
∵ BD=DC(等腰三角形的中线平分对应的边)
AB=AC(等腰三角形的性质)
AD=AD(公共边)
∴△ADB≌△ADC(S.S.S)
可得∠BAD=∠CAD,∠ADB=∠ADC(全等角形对应角相等)
∵∠ADB+∠ADC=∠BDC(已证),且∠BDC=180度(平角定义)
∴∠ADB=∠ADC=90°(等量代换)
∴AD⊥BC
得证
等腰直角三角形的边角之间的关系 :
(1)三角形三内角和等于180°。
(2)三角形的一个外角等于和它不相邻的两个内角之和。
(3)三角形的一个外角大于任何一个和它不相邻的内角。
(4)三角形两边之和大于第三边,两边之差小于第三边。
(5)在同一个三角形内,等边对等角,等角对等边。
三线合一,即在等腰三角形中顶角的角平分线,底边的中线,底边的高线,三条线互相重合。要证明等腰三角形三线合一很简单,可以先假设一个,然后去证明另外两个,例如条件是等腰三角形和底边上的高,然后证这个高也是顶角的平分线,底边上的中线即可,证明方法可以用三角形全等来证明。
三线合一可以证明这个三角形是等腰三角形。相关定理如下:
1、如果三角形中有一角的角平分线和它所对边的高重合,那么这个三角形是等腰三角形。
2、如果三角形中有一边的中线和这条边上的高重合,那么这个三角形是等腰三角形。
3、如果三角形中有一角的角平分线和它所对边的中线重合,那么这个三角形是等腰三角形。相反的,如果一个三角形是等腰三角形,则可以证明这个三角形的三线合一。