幂的除法法则
幂的运算法则如下:
(1)同底数
幂的乘法:同底数幂相乘,底数不变,指数相加。
am×an=a(m+n)(a≠0,m,n均为正整数
,并且m>n)。
(2)同底数幂的除法:同底数幂相除,底数不变,指数相减。
am÷an=a(m-n)(a≠0,m,n均为正整数,并且m>n)。
(3)幂的乘方
:幂的乘方,底数不变,指数相乘。
(a^m)^n=a^(mn),(m,n都为正整数)。
(4)积的乘方:等于将积的每个因式
分别乘方,再把所得的幂相乘。
(ab)^n=a^nb^n,(n为正整数)。
(5)零指数。
a0=1 (a≠0)。
(6)负整数指数幂。
a-p=1/ap(a≠0,p是正整数)
(7)负实数指数幂。
a^(-p)=1/(a)^p或(1/a)^p(a≠0,p为正实数
)
幂数口诀
指数加减底不变,同底数幂相乘除。
指数相乘底不变,幂的乘方要清楚。
积商乘方原指数,换底乘方再乘除。
非零数的零次幂,常值为1不糊涂。
负整数的指数幂,指数转正求倒数。
看到分数指数幂
,想到底数必非负。
乘方指数是分子,根指数要当分母。