等差数列立方和公式推导过程
以下是我的回答,如下:
首先,我们考虑一个等差数列的通项公式为
a_n=a_1+(n-1)d
a
n
=a
1
+(n−1)d,其中
a_1
a
1
是首项,
d
d是公差。
接下来,我们将这
等差数列求和公式Sn=n(a1+an)/2 或Sn=a1*n+n(n-1)d/2 注:an=a1+(n-1)d
转换过程:Sn=n(a1+an)/2=n{a1+[a1+(n-1)d]}/2=n[2a1+(n-1)d]/2=[2na1+n(n-1)d]/2
应该是对于任一N均成立吧(一定),那么Sn-Sn-1=[n(a1+an)-(n-1)(a1+an-1)]/2=[a1+n*an-(n-1)*an-1]/2= an
化简得(n-1)an-1-(n-2)an=a1,这对于任一N均成立
当n取n-1时式子变为,(n-3)an-1-(n-2)an-2=a1=(n-2)an-(n-1)an-1
得
2(n-2)an-1=(n-2)*(an+an-2)
当n大于2时得2an-1=an+an-2 显然证得它是等差数列
和=(首项+末项)×项数÷2
项数=(末项-首项)÷公差+1
首项=2和÷项数-末项
末项=2和÷项数-首项
末项=首项+(项数-1)×公差
性质:等差数列求是求数列中所有项的和
若 m、n、p、q∈N
①若m+n=p+q,则am+an=ap+aq
②若m+n=2q,则am+an=2aq。